博客
关于我
COCO 2017 数据集下载
阅读量:700 次
发布时间:2019-03-17

本文共 659 字,大约阅读时间需要 2 分钟。

COCO 2017 数据集简介

作为一个多模态数据集,COCO2017 拥有五大标注类型,分别是目标检测、关键点检测、素材分割、全景分割和图像说明。这些标注类型为研究者提供了丰富的数据来源,支持多种计算机视觉任务的开发与验证。

在标注信息的存储与处理方面,采用标准化的JSON格式进行数据交换,通过COCO API能够方便地访问和操作所有标注信息。

COCO 2017 下载与数据规模

COCO 2017 提供了多种下载选项,用户可以根据需求选择合适的数据包。具体数据包类型及体积如下:

  • 训练集图片(Train images):118K张,占存储空间18GB
  • 验证集图片(Val images):5K张,占存储空间1GB
  • 测试集图片(Test images):41K张,占存储空间6GB
  • 未标注图片(Unlabeled images):123K张,占存储空间19GB

在注释数据方面,提供以下不同类型的标注数据集:

  • Trainval2017标注文件(annotations_trainval2017):241MB
  • Stuff Train/Val标注文件(1.1GB)
  • Testing Image info:1MB
  • Unlabeled Image info:4MB

数据集功能亮点

COCO2017 凭借其完善的标注方案和多样化的数据集构成,成为AI研究者的重要数据支持平台。此外,数据的标准化标注格式便于程序化处理,支持AI模型的高效训练与验证。

通过这些优化,COCO2017 确实为观察与研究提供了强大的工具支持。

转载地址:http://dmqhz.baihongyu.com/

你可能感兴趣的文章
nmap使用
查看>>
nmap使用实战(附nmap安装包)
查看>>
Nmap哪些想不到的姿势
查看>>
Nmap扫描教程之Nmap基础知识
查看>>
nmap指纹识别要点以及又快又准之方法
查看>>
Nmap渗透测试指南之指纹识别与探测、伺机而动
查看>>
Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
查看>>
NMAP网络扫描工具的安装与使用
查看>>
NMF(非负矩阵分解)
查看>>
nmon_x86_64_centos7工具如何使用
查看>>
NN&DL4.1 Deep L-layer neural network简介
查看>>
NN&DL4.3 Getting your matrix dimensions right
查看>>
NN&DL4.7 Parameters vs Hyperparameters
查看>>
NN&DL4.8 What does this have to do with the brain?
查看>>
nnU-Net 终极指南
查看>>
No 'Access-Control-Allow-Origin' header is present on the requested resource.
查看>>
No 'Access-Control-Allow-Origin' header is present on the requested resource.
查看>>
NO 157 去掉禅道访问地址中的zentao
查看>>
no available service ‘default‘ found, please make sure registry config corre seata
查看>>
No compiler is provided in this environment. Perhaps you are running on a JRE rather than a JDK?
查看>>